Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(4): 2027-2037, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38235672

RESUMO

The presence of numerous chemical contaminants from industrial, agricultural, and pharmaceutical sources in water supplies poses a potential risk to human and ecological health. Current chemical analyses suffer from limitations, including chemical coverage and high cost, and broad-coverage in vitro assays such as transcriptomics may further improve water quality monitoring by assessing a large range of possible effects. Here, we used high-throughput transcriptomics to assess the activity induced by field-derived water extracts in MCF7 breast carcinoma cells. Wastewater and surface water extracts induced the largest changes in expression among cell proliferation-related genes and neurological, estrogenic, and antibiotic pathways, whereas drinking and reclaimed water extracts that underwent advanced treatment showed substantially reduced bioactivity on both gene and pathway levels. Importantly, reclaimed water extracts induced fewer changes in gene expression than laboratory blanks, which reinforces previous conclusions based on targeted assays and improves confidence in bioassay-based monitoring of water quality.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Humanos , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Qualidade da Água , Perfilação da Expressão Gênica , Bioensaio
2.
Chemosphere ; 331: 138789, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37116726

RESUMO

Assessing the impact of chemical contaminants on aquatic ecosystem health remains challenging due to complex exposure scenarios and the myriad of impact metrics to consider. To expand the breadth of compounds monitored and evaluate the potential hazard of environmental mixtures, cell-based bioassays (estrogen receptor alpha (ERα) and aryl hydrocarbon receptor (AhR)) and non-targeted chemical analyses with high resolution mass spectrometry (NTA-HRMS) were used to assess the quality of ∼70 marine sediment samples collected from 5 distinct coastal and offshore habitats of the Southern California Bight. AhR responses (<0.12-4.5 ng TCDD/g dry weight) were more frequently detectable and more variable than for ERα (<0.1-0.5 ng E2/g dry weight). The range of AhR and ERα responses increased by habitat as follows: Channel Islands < Mid-shelf < Marinas < Ports < Estuaries. The narrow range and magnitude of ERα screening response suggested limited potential for estrogenic impacts across sediments from all 5 habitats. The AhR response was positively correlated with total PAH and PCB concentrations and corresponded with a chemical score index representing the severity of metal and organic contamination. NTA-HRMS fingerprints generated in positive electrospray ionization mode were clearly distinguishable among coastal vs. offshore samples, with the greatest chemical complexity (n = 982 features detected) observed in estuarine sediment from a highly urbanized watershed (Los Angeles River). The concordance and complementary nature of bioscreening and NTA-HRMS results indicates their utility as holistic proxies for sediment quality, and when analyzed in conjunction with routine targeted chemical monitoring, show promise in identifying unexpected contaminants and novel toxicants.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , California , Ecossistema , Monitoramento Ambiental/métodos , Receptor alfa de Estrogênio , Cromatografia Gasosa-Espectrometria de Massas , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise
3.
Heliyon ; 8(5): e09534, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35663765

RESUMO

To broaden the scope of contaminants monitored in human-impacted riverine systems, water, sediment, and treated wastewater effluent were analyzed using receptor-based cell assays that provide an integrated response to chemicals based on their mode of biological activity. Samples were collected from three California (USA) watersheds with varying degrees of urbanization and discharge from municipal wastewater treatment plants (WWTPs). To complement cell assay results, samples were also analyzed for a suite of contaminants of emerging concern (CECs) using gas and liquid chromatography-mass spectrometry (GC- and LC-MS/MS). For most water and sediment samples, bioassay equivalent concentrations for estrogen and glucocorticoid receptor assays (ER- and GR-BEQs, respectively) were near or below reporting limits. Measured CEC concentrations compared to monitoring trigger values established by a science advisory panel indicated minimal to moderate concern in water but suggested that select pesticides (pyrethroids and fipronil) had accumulated to levels of greater concern in river sediments. Integrating robust, standardized bioanalytical tools such as the ER and GR assays utilized in this study into existing chemical-specific monitoring and assessment efforts will enhance future CEC monitoring efforts in impacted riverine systems and coastal watersheds.

4.
Sci Total Environ ; 795: 148864, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34328929

RESUMO

In recent decades, cyanobacteria harmful algal blooms (cyanoHABs) have increased in magnitude, frequency, and duration in freshwater ecosystems. CyanoHABs can impact water quality by the production of potent toxins known as cyanotoxins. Environmental exposure to cyanotoxins has been associated with severe illnesses in humans, domestic animals, and wildlife. However, the effects of sustained exposure to cyanotoxins on aquatic life are poorly understood. In this study, over 150 peer-reviewed articles were critically evaluated to better understand the ecotoxicity of 5 cyanotoxin classes (microcystins, cylindrospermopsin, anatoxin-a, saxitoxins, nodularin) on fish, amphibians, aquatic invertebrates, and birds exclusively feeding in freshwater habitats. The systemic review demonstrated that microcystins, and more specifically microcystin-LR, were the most studied cyanotoxins. Ecotoxicological investigations were typically conducted using a fish or aquatic invertebrate model, with mortality, bioaccumulation, and biochemical responses as the most frequently measured endpoints. After excluding the studies that did not meet our acceptability criteria, remaining studies were examined to identify the no-observed and lowest observed effect concentrations (NOEC and LOEC) for microcystins; the limited amount of data for other cyanotoxins did not allow for analysis. The published ecotoxicity data suggests that the U.S. EPA recreational water quality criteria for microcystin (8 µg/L) may be protective of acute toxicity in aquatic organisms but does not appear to protect against chronic toxicity. Individual U.S. states have developed more stringent recreational health-based thresholds, such as 0.8 µg/L in California. Comparisons of this threshold to the chronic NOEC and LOEC data indicate that more restrictive microcystins thresholds may be required to be protective of aquatic life. Additional research is needed to evaluate the sublethal effects of a wider array of microcystin congeners and other cyanotoxins on organisms relevant to U.S. watersheds to better support nationwide thresholds protective of aquatic life.


Assuntos
Toxinas Bacterianas , Cianobactérias , Animais , Ecossistema , Água Doce/análise , Proliferação Nociva de Algas , Humanos , Microcistinas/toxicidade , Estados Unidos
5.
Artigo em Inglês | MEDLINE | ID: mdl-33684654

RESUMO

To evaluate the impact of environmental contaminants on aquatic health, extensive surveys of fish populations have been conducted using bioaccumulation as an indicator of impairment. While these studies have reported mixtures of chemicals in fish tissues, the relationship between specific contaminants and observed adverse impacts remains poorly understood. The present study aimed to characterize the toxicological responses induced by persistent organic pollutants in wild-caught hornyhead turbot (P. verticalis). To do so, hornyhead turbot were interperitoneally injected with a single dose of PCB or PBDE congeners prepared using environmentally realistic mixture proportions. After 96-hour exposure, the livers were excised and analyzed using transcriptomic approaches and analytical chemistry. Concentrations of PCBs and PBDEs measured in the livers indicated clear differences across treatments, and congener profiles closely mirrored our expectations. Distinct gene profiles were characterized for PCB and PBDE exposed fish, with significant differences observed in the expression of genes associated with immune responses, endocrine-related functions, and lipid metabolism. Our findings highlight the key role that transcriptomics can play in monitoring programs to assess chemical-induced toxicity in heterogeneous group of fish (mixed gender and life stage) as is typically found during field surveys. Altogether, the present study provides further evidence of the potential of transcriptomic tools to improve aquatic health assessment and identify causative agents.


Assuntos
Linguado/genética , Éteres Difenil Halogenados/toxicidade , Bifenilos Policlorados/toxicidade , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Monitoramento Ambiental , Proteínas de Peixes/genética
6.
Environ Toxicol Chem ; 40(2): 402-412, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33136302

RESUMO

Effects-based monitoring frameworks that combine the use of analytical chemistry with in vitro cell bioassays, as well as in vivo whole organism tests offer an integrative approach to broadly screen for chemical contaminants and link their presence with adverse effects on aquatic organisms. California (USA) is currently evaluating the use of such a framework to assess the impact of contaminants of emerging concern (CECs) on biota in urbanized rivers and other waterbodies. In the present study, the occurrence and effects of contaminants found in the Los Angeles River (Los Angeles County, CA, USA) were examined using analytical chemistry and in vitro and in vivo bioassays. Male fathead minnows were deployed in field-based exposure units and exposed to river water for 21 d. The 2 field sites (above Bull Creek [BLC] and below Glendale Water Reclamation Plant [GWR]) were selected based on their unique characteristics and different contaminant discharge sources. In addition, 2 control units (filtered city water and estrone-spiked water) were added to the experimental design. Chemical analyses revealed differences in abundance of CECs between the 2 field sites and the controls, with GWR having the highest number and concentrations of CECs and metals. Cell bioassays screening for estrogenic, glucocorticoid, progestin, and dioxin-like activities were near or below detection limits in all river water samples, indicating a low potential for endocrine-related toxicity and tissue damage. Cell bioassay results were corroborated by the in vivo analyses. Field-exposed fish exhibited no changes in plasma hormones (e.g., estradiol), vitellogenin, or gonad maturation, but gene biomarkers of chemical exposure (cytochrome p450 1A and metallothionein) were significantly elevated, confirming exposure of the fish to complex chemical mixtures. The results demonstrate the value of a tiered monitoring approach to assess the sublethal effects of chemical mixtures on aquatic life. Environ Toxicol Chem 2021;40:402-412. © 2020 SETAC.


Assuntos
Cyprinidae , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Masculino , Rios , Vitelogeninas , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
7.
Environ Sci Technol ; 54(21): 13849-13860, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32989987

RESUMO

Many pollutants cause endocrine disruption in aquatic organisms. While studies of the direct effects of toxicants on exposed organisms are commonplace, little is known about the potential for toxicant exposures in a parental (F0) generation to affect unexposed F1 or F2 generations (multigenerational and transgenerational effects, respectively), particularly in estuarine fishes. To investigate this possibility, we exposed inland silversides (Menidia beryllina) to environmentally relevant (low ng/L) concentrations of ethinylestradiol, bifenthrin, trenbolone, and levonorgestrel from 8 hpf to 21 dph. We then measured development, immune response, reproduction, gene expression, and DNA methylation for two subsequent generations following the exposure. Larval exposure (F0) to each compound resulted in negative effects in the F0 and F1 generations, and for ethinylestradiol and levonorgestrel, the F2 also. The specific endpoints that were responsive to exposure in each generation varied, but included increased incidence of larval deformities, reduced larval growth and survival, impaired immune function, skewed sex ratios, ovarian atresia, reduced egg production, and altered gene expression. Additionally, exposed fish exhibited differences in DNA methylation in selected genes, across all three generations, indicating epigenetic transfer of effects. These findings suggest that assessments across multiple generations are key to determining the full magnitude of adverse effects from contaminant exposure in early life.


Assuntos
Disruptores Endócrinos , Poluentes Químicos da Água , Animais , Disruptores Endócrinos/toxicidade , Etinilestradiol/toxicidade , Peixes , Reprodução , Poluentes Químicos da Água/toxicidade
8.
Artigo em Inglês | MEDLINE | ID: mdl-32992212

RESUMO

Toxaphene is an organochlorine pesticide and environmental contaminant that is concerning due to its atmospheric transport and persistence in soil. In Florida, toxaphene and other organochlorine pesticides were used heavily in agriculture on the north shore of Lake Apopka and they are still detectable in soil. Wild largemouth bass that inhabit the lake and the marshes along the north shore have been exposed to a variety of organochlorine pesticides including dieldrin, methoxychlor, and p,p'-DDE, among others. While these other organochlorine pesticides have been studied for their endocrine disrupting effects in largemouth bass, there is little information for toxaphene. In this study, male and female largemouth bass were given food containing 50 mg/kg toxaphene for almost 3 months, to achieve tissue levels similar to those found in fish at Lake Apopka. Sex-specific toxicity was then evaluated by measuring various reproductive endpoints and transcriptomic changes. In females, gonadosomatic index showed a trend towards reduction (p = 0.051) and plasma vitellogenin was reduced by ~40% relative to controls. However plasma levels of 17ß-estradiol and testosterone were not perturbed by toxaphene exposure. These data suggest that toxaphene does not act as a weak estrogen as many other organochlorine pesticides do, but rather appears to be acting as an antiestrogen in female fish. There were no obvious changes in the gonadosomatic index and plasma hormones in male bass. However, ex vivo explant experiments revealed that toxaphene prevented human chorionic gonadotropin-stimulated testosterone production in the testis. This suggested that toxaphene had anti-androgenic effects in males. Subsequent transcriptomic analyses of the testis revealed that androgen receptor/beta-2-microglobulin signaling was up-regulated while insulin-related pathways were suppressed with toxaphene, which could be interpreted as a compensatory response to androgen suppression. In the male liver, the transcriptome analysis revealed an overwhelming suppression in immune-related signaling cascades (e.g. lectin-like receptor and ITSM-Containing Receptor signaling, CD16/CD14 Proinflammatory Monocyte Activation, and CD38/CD3-JUN/FOS/NF-kB Signaling in T-cell Proliferation). Overall, this study showed that toxaphene induced sex-specific effects. The transcriptomic and physiological responses observed can contribute to the development of adverse outcome pathways for toxaphene exposure in fish.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Gônadas/fisiologia , Fígado/fisiologia , Reprodução , Toxafeno/toxicidade , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Bass , Disruptores Endócrinos/toxicidade , Feminino , Gônadas/efeitos dos fármacos , Inseticidas/toxicidade , Fígado/efeitos dos fármacos , Masculino
9.
Mol Cell Endocrinol ; 507: 110764, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32112812

RESUMO

Organochlorine pesticides (OCPs) are persistent environmental contaminants that act as endocrine disruptors and organ system toxicants. These pesticides (e.g. dichlorodiphenyltrichloroethane (DDT), dieldrin, toxaphene, among others) are ranked as some of the most concerning chemicals for human health. These pesticides (1) act as teratogens, (2) are neuroendocrine disruptors, (3) suppress the immune and reproductive systems, and (4) dysregulate lipids and metabolism. Using a computational approach, we revealed enriched endocrine-related pathways in the Comparative Toxicogenomics Database sensitive to this chemical class, and these included reproduction (gonadotropins, estradiol, androgen, steroid biosynthesis, oxytocin), thyroid hormone, and insulin. Insight from the Tox21 and ToxCast programs confirm that these agrochemicals activate estrogen receptors, androgen receptors, and retinoic acid receptors with relatively high affinity, although differences exist in their potency. We propose an adverse outcome pathway for OCPs toxicity in the fish testis as a novel contribution to further understanding of OCP-induced toxicity. Organochlorine pesticides, due to their persistence and high toxicity to aquatic and terrestrial wildlife as well as humans, remain significant agrochemicals of concern.


Assuntos
Disruptores Endócrinos/toxicidade , Peixes/fisiologia , Hidrocarbonetos Clorados/toxicidade , Praguicidas/toxicidade , Reprodução/efeitos dos fármacos , Agroquímicos/toxicidade , Animais , Metabolismo Energético/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Peixes/metabolismo , Humanos , Testes de Toxicidade/veterinária
10.
Environ Toxicol Chem ; 37(3): 884-892, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29091346

RESUMO

High-throughput cell assays that detect and integrate the response of multiple chemicals acting via a common mode of action have the potential to enhance current environmental monitoring practices. Establishing the linkage between in vitro and in vivo responses is key to demonstrating that in vitro cell assays can be predictive of ecologically relevant outcomes. The present study investigated the potency of 17ß-estradiol (E2), estrone (E1), nonylphenol (NP), and treated wastewater effluent using the readily available GeneBLAzer® estrogen receptor transactivation assay and 2 life stages of the inland silverside (Menidia beryllina). In vitro estrogenic potencies were ranked as follows: E2 > E1 >> NP. All 3 model estrogens induced vitellogenin and choriogenin expression in a dose-dependent manner in larvae and juveniles. However, apical effects were only found for E2 and E1 exposures of juveniles, which resulted in female-skewed sex ratios. Wastewater effluent samples exhibiting low in vitro estrogenicity (below the 10% effective concentration [EC10]), did not cause significant changes in M. beryllina. Significant induction of estrogen-responsive genes was observed at concentrations 6 to 26 times higher than in vitro responses. Gonadal feminization occurred at concentrations at least 19 to 26 times higher than the in vitro responses. These findings indicated that in vitro cell assays were more sensitive than the fish assays, making it possible to develop in vitro effect thresholds protective of aquatic organisms. Environ Toxicol Chem 2018;37:884-892. © 2017 SETAC.


Assuntos
Monitoramento Ambiental , Estrogênios/efeitos adversos , Peixes/metabolismo , Animais , Estrona/análise , Feminino , Peixes/genética , Regulação da Expressão Gênica , Masculino , Especificidade de Órgãos , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Razão de Masculinidade , Poluentes Químicos da Água/efeitos adversos
11.
Toxicol Sci ; 156(2): 344-361, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28201806

RESUMO

Cyclooxygenase (COX) inhibitors are ubiquitous in aquatic systems and have been detected in fish tissues. The exposure of fish to these pharmaceuticals is concerning because COX inhibitors disrupt the synthesis of prostaglandins (PGs), which modulate a variety of essential biological functions, including reproduction. In this study, we investigated the effects of well-characterized mammalian COX inhibitors on female fathead minnow reproductive health. Fish (n = 8) were exposed for 96 h to water containing indomethacin (IN; 100 µg/l), ibuprofen (IB; 200 µg/l) or celecoxib (CX; 20 µg/l), and evaluated for effects on liver metabolome and ovarian gene expression. Metabolomic profiles of IN, IB and CX were not significantly different from control or one another. Exposure to IB and CX resulted in differential expression of comparable numbers of genes (IB = 433, CX = 545). In contrast, 2558 genes were differentially expressed in IN-treated fish. Functional analyses (canonical pathway and gene set enrichment) indicated extensive effects of IN on PG synthesis pathway, oocyte meiosis, and several other processes consistent with physiological roles of PGs. Transcriptomic data were congruent with PG data; IN-reduced plasma PG F2α concentration, whereas IB and CX did not. Five putative AOPs were developed linking the assumed molecular initiating event of COX inhibition, with PG reduction and the adverse outcome of reproductive failure via reduction of: (1) ovulation, (2) reproductive behaviors mediated by exogenous or endogenous PGs, and (3) oocyte maturation in fish. These pathways were developed using, in part, empirical data from the present study and other publicly available data.


Assuntos
Inibidores de Ciclo-Oxigenase/toxicidade , Cyprinidae/crescimento & desenvolvimento , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/diagnóstico , Metaboloma/efeitos dos fármacos , Ovário/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Animais , Cyprinidae/metabolismo , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/etiologia , Feminino , Perfilação da Expressão Gênica , Ovário/enzimologia , Prostaglandina-Endoperóxido Sintases/metabolismo , Transcriptoma/efeitos dos fármacos
12.
Environ Pollut ; 213: 940-948, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27049791

RESUMO

High concentrations of DDT and metabolites (ΣDDT) have been detected in sediment and the demersal flatfish hornyhead turbot (Pleuronichtys verticalis) collected from Palos Verdes (PV), California, USA, a site contaminated with over 100 metric tons of DDT throughout 1960s-70s. This study was conducted to assess the transfer of ΣDDT from PV-sediment into polychaetes (Neanthes arenaceodentata) and hornyhead turbot, and to investigate if the responses in turbots from two different laboratory exposures mimic those in turbots caught in PV (PV-turbot). Turbot fed PV-sediment-contaminated polychaete for 7 days had liver concentrations of ΣDDT similar to PV-turbot. After 28 days, ΣDDT also accumulated in livers of turbot gavaged with a ΣDDT mixture. In vitro cell bioassays indicated significant increases of 17ß-estradiol equivalents (EEQ) in turbot bile extracts as compared to the control in the 7-day study. These responses corresponded to those measured in PV-fish. Glucocorticoid receptor (GR), anti-androgen receptor (anti-AR), estrogen receptor (ER) or aryl hydrocarbon receptor (AhR) activities were also observed in extracts of PV-sediment, and PV-sediment-exposed worm. Anti-AR, AhR and GR activities were significantly higher in PV-sediment than reference sediment (San Diego, SD). Higher transcripts of hepatic VTG, ERα and ERß were found in PV-turbot than SD-turbot, but were unaltered in fish exposed to sediment-contaminated worms for the 7-day study. In contrast, liver extracts from the 28-day treatment of ΣDDT showed lower EEQ but similar hepatic VTG and ERß transcripts relative to those of PV-turbot. These data indicated that trophic transfer of sediment-associated DDT in 7-day exposures corresponded to field measurements of DDT residues and in vitro ER bioactivities, but failed to mimic in vivo biological effects observed in field fish. In contrast, treatment with ΣDDT alone for 28 days mimicked in vivo biological effects of DDTs in PV fish, but did not correspond to liver concentrations or in vitro bioactivities.


Assuntos
DDT , Exposição Ambiental/efeitos adversos , Linguado/metabolismo , Cadeia Alimentar , Sedimentos Geológicos/química , Poliquetos/metabolismo , Receptores de Estrogênio/metabolismo , Animais , California , DDT/metabolismo , DDT/farmacologia , Dieta , Disruptores Endócrinos/metabolismo , Disruptores Endócrinos/farmacologia , Exposição Ambiental/análise , Monitoramento Ambiental/métodos , Estradiol/metabolismo , Linguados/metabolismo , Masculino , Praguicidas , Receptores de Estrogênio/genética , Eliminação de Resíduos , Solo/química , Poluentes do Solo/metabolismo , Poluentes do Solo/farmacologia , Transcrição Gênica , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/farmacologia
13.
J Vis Exp ; (118)2016 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-28060336

RESUMO

In vitro transactivation bioassays have shown promise as water quality monitoring tools, however their adoption and widespread application has been hindered partly due to a lack of standardized methods and availability of robust, user-friendly technology. In this study, commercially available, division-arrested cell lines were employed to quantitatively screen for endocrine activity of chemicals present in water samples of interest to environmental quality professionals. A single, standardized protocol that included comprehensive quality assurance/quality control (QA/QC) checks was developed for Estrogen and Glucocorticoid Receptor activity (ER and GR, respectively) using a cell-based Fluorescence Resonance Energy Transfer (FRET) assay. Samples of treated municipal wastewater effluent and surface water from freshwater systems in California (USA), were extracted using solid phase extraction and analyzed for endocrine activity using the standardized protocol. Background and dose-response for endpoint-specific reference chemicals met QA/QC guidelines deemed necessary for reliable measurement. The bioassay screening response for surface water samples was largely not detectable. In contrast, effluent samples from secondary treatment plants had the highest measurable activity, with estimated bioassay equivalent concentrations (BEQs) up to 392 ng dexamethasone/L for GR and 17 ng 17ß-estradiol/L for ER. The bioassay response for a tertiary effluent sample was lower than that measured for secondary effluents, indicating a lower residual of endocrine active chemicals after advanced treatment. This protocol showed that in vitro transactivation bioassays that utilize commercially available, division-arrested cell "kits", can be adapted to screen for endocrine activity in water.


Assuntos
Bioensaio , Disruptores Endócrinos/análise , Monitoramento Ambiental/métodos , Ativação Transcricional , Poluentes Químicos da Água/análise , Linhagem Celular , Humanos , Receptores de Estrogênio/metabolismo , Receptores de Glucocorticoides/metabolismo , Águas Residuárias/análise , Água
14.
Chemosphere ; 144: 193-200, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26363320

RESUMO

Transcriptomic analysis can complement traditional ecotoxicology data by providing mechanistic insight, and by identifying sub-lethal organismal responses and contaminant classes underlying observed toxicity. Before transcriptomic information can be used in monitoring and risk assessment, it is necessary to determine its reproducibility and detect key steps impacting the reliable identification of differentially expressed genes. A custom 15K-probe microarray was used to conduct transcriptomics analyses across six laboratories with estuarine amphipods exposed to cyfluthrin-spiked or control sediments (10 days). Two sample types were generated, one consisted of total RNA extracts (Ex) from exposed and control samples (extracted by one laboratory) and the other consisted of exposed and control whole body amphipods (WB) from which each laboratory extracted RNA. Our findings indicate that gene expression microarray results are repeatable. Differentially expressed data had a higher degree of repeatability across all laboratories in samples with similar RNA quality (Ex) when compared to WB samples with more variable RNA quality. Despite such variability a subset of genes were consistently identified as differentially expressed across all laboratories and sample types. We found that the differences among the individual laboratory results can be attributed to several factors including RNA quality and technical expertise, but the overall results can be improved by following consistent protocols and with appropriate training.


Assuntos
Ecotoxicologia/normas , Perfilação da Expressão Gênica/métodos , Laboratórios/normas , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Toxicogenética/normas , Anfípodes/efeitos dos fármacos , Anfípodes/genética , Animais , Perfilação da Expressão Gênica/normas , Sedimentos Geológicos/química , Humanos , Nitrilas/toxicidade , Análise de Sequência com Séries de Oligonucleotídeos/normas , Piretrinas/toxicidade , Reprodutibilidade dos Testes
15.
Integr Environ Assess Manag ; 12(3): 540-7, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26426153

RESUMO

The chemical-specific risk-based paradigm that informs monitoring and assessment of environmental contaminants does not apply well to the many thousands of new chemicals that are being introduced into ambient receiving waters. We propose a tiered framework that incorporates bioanalytical screening tools and diagnostic nontargeted chemical analysis to more effectively monitor for contaminants of emerging concern (CECs). The framework is based on a comprehensive battery of in vitro bioassays to first screen for a broad spectrum of CECs and nontargeted analytical methods to identify bioactive contaminants missed by the currently favored targeted analyses. Water quality managers in California have embraced this strategy with plans to further develop and test this framework in regional and statewide pilot studies on waterbodies that receive discharge from municipal wastewater treatment plants and stormwater runoff. In addition to directly informing decisions, the data obtained using this framework can be used to construct and validate models that better predict CEC occurrence and toxicity. The adaptive interplay among screening results, diagnostic assessment and predictive modeling will allow managers to make decisions based on the most current and relevant information, instead of extrapolating from parameters with questionable linkage to CEC impacts. Integr Environ Assess Manag 2016;12:540-547. © 2015 SETAC.


Assuntos
Ecossistema , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , California , Monitoramento Ambiental/normas , Modelos Teóricos , Medição de Risco/métodos , Poluição Química da Água/estatística & dados numéricos , Qualidade da Água/normas
16.
Water Res ; 83: 303-9, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26177482

RESUMO

In vitro bioassays have shown promise as water quality monitoring tools. In this study, four commercially available in vitro bioassays (GeneBLAzer(®) androgen receptor (AR), estrogen receptor-alpha (ER), glucocorticoid receptor (GR) and progesterone receptor (PR) assays) were adapted to screen for endocrine active chemicals in samples from two recycled water plants. The standardized protocols were used in an interlaboratory comparison exercise to evaluate the reproducibility of in vitro bioassay results. Key performance criteria were successfully achieved, including low background response, standardized calibration parameters and high intra-laboratory precision. Only two datasets were excluded due to poor calibration performance. Good interlaboratory reproducibility was observed for GR bioassay, with 16-26% variability among the laboratories. ER and PR bioactivity was measured near the bioassay limit of detection and showed more variability (21-54%), although interlaboratory agreement remained comparable to that of conventional analytical methods. AR bioassay showed no activity for any of the samples analyzed. Our results indicate that ER, GR and PR, were capable of screening for different water quality, i.e., the highest bioactivity was observed in the plant influent, which also contained the highest concentrations of endocrine active chemicals measured by LC-MS/MS. After advanced treatment (e.g., reverse osmosis), bioactivity and target chemical concentrations were both below limits of detection. Comparison of bioassay and chemical equivalent concentrations revealed that targeted chemicals accounted for ≤5% of bioassay activity, suggesting that detection limits by LC-MS/MS for some chemicals were insufficient and/or other bioactive compounds were present in these samples. Our study demonstrated that in vitro bioassays responses were reproducible, and can provide information to complement conventional analytical methods for a more comprehensive water quality assessment.


Assuntos
Bioensaio/métodos , Disruptores Endócrinos/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Purificação da Água , Reciclagem , Reprodutibilidade dos Testes , Água/análise
17.
Aquat Toxicol ; 152: 186-94, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24794047

RESUMO

Cadmium is a heavy metal that can accumulate to toxic levels in the environment leading to detrimental effects in animals and humans including kidney, liver and lung injuries. Using a transcriptomics approach, genes and cellular pathways affected by a low dose of cadmium were investigated. Adult largemouth bass were intraperitoneally injected with 20µg/kg of cadmium chloride (mean exposure level - 2.6µg of cadmium per fish) and microarray analyses were conducted in the liver and testis 48h after injection. Transcriptomic profiles identified in response to cadmium exposure were tissue-specific with the most differential expression changes found in the liver tissues, which also contained much higher levels of cadmium than the testis. Acute exposure to a low dose of cadmium induced oxidative stress response and oxidative damage pathways in the liver. The mRNA levels of antioxidants such as catalase increased and numerous transcripts related to DNA damage and DNA repair were significantly altered. Hepatic mRNA levels of metallothionein, a molecular marker of metal exposure, did not increase significantly after 48h exposure. Carbohydrate metabolic pathways were also disrupted with hepatic transcripts such as UDP-glucose, pyrophosphorylase 2, and sorbitol dehydrogenase highly induced. Both tissues exhibited a disruption of steroid signaling pathways. In the testis, estrogen receptor beta and transcripts linked to cholesterol metabolism were suppressed. On the contrary, genes involved in cholesterol metabolism were highly increased in the liver including genes encoding for the rate limiting steroidogenic acute regulatory protein and the catalytic enzyme 7-dehydrocholesterol reductase. Integration of the transcriptomic data using functional enrichment analyses revealed a number of enriched gene networks associated with previously reported adverse outcomes of cadmium exposure such as liver toxicity and impaired reproduction.


Assuntos
Bass/genética , Bass/metabolismo , Cádmio/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Cádmio/metabolismo , Reparo do DNA/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Análise Serial de Proteínas , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/metabolismo , Poluentes Químicos da Água/metabolismo
18.
Environ Sci Technol ; 48(4): 2385-94, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24409827

RESUMO

The present study investigated whether a combination of targeted analytical chemistry information with unsupervised, data-rich biological methodology (i.e., transcriptomics) could be utilized to evaluate relative contributions of wastewater treatment plant (WWTP) effluents to biological effects. The effects of WWTP effluents on fish exposed to ambient, receiving waters were studied at three locations with distinct WWTP and watershed characteristics. At each location, 4 d exposures of male fathead minnows to the WWTP effluent and upstream and downstream ambient waters were conducted. Transcriptomic analyses were performed on livers using 15,000 feature microarrays, followed by a canonical pathway and gene set enrichment analyses. Enrichment of gene sets indicative of teleost brain-pituitary-gonadal-hepatic (BPGH) axis function indicated that WWTPs serve as an important source of endocrine active chemicals (EACs) that affect the BPGH axis (e.g., cholesterol and steroid metabolism were altered). The results indicated that transcriptomics may even pinpoint pertinent adverse outcomes (i.e., liver vacuolization) and groups of chemicals that preselected chemical analytes may miss. Transcriptomic Effects-Based monitoring was capable of distinguishing sites, and it reflected chemical pollution gradients, thus holding promise for assessment of relative contributions of point sources to pollution and the efficacy of pollution remediation.


Assuntos
Disruptores Endócrinos/toxicidade , Monitoramento Ambiental/métodos , Transcriptoma/genética , Águas Residuárias/química , Poluentes Químicos da Água/toxicidade , Poluição da Água/análise , Purificação da Água , Animais , Cyprinidae/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Análise de Componente Principal , Estações do Ano , Transcriptoma/efeitos dos fármacos
19.
Environ Sci Technol ; 48(3): 1940-56, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24369993

RESUMO

Thousands of organic micropollutants and their transformation products occur in water. Although often present at low concentrations, individual compounds contribute to mixture effects. Cell-based bioassays that target health-relevant biological endpoints may therefore complement chemical analysis for water quality assessment. The objective of this study was to evaluate cell-based bioassays for their suitability to benchmark water quality and to assess efficacy of water treatment processes. The selected bioassays cover relevant steps in the toxicity pathways including induction of xenobiotic metabolism, specific and reactive modes of toxic action, activation of adaptive stress response pathways and system responses. Twenty laboratories applied 103 unique in vitro bioassays to a common set of 10 water samples collected in Australia, including wastewater treatment plant effluent, two types of recycled water (reverse osmosis and ozonation/activated carbon filtration), stormwater, surface water, and drinking water. Sixty-five bioassays (63%) showed positive results in at least one sample, typically in wastewater treatment plant effluent, and only five (5%) were positive in the control (ultrapure water). Each water type had a characteristic bioanalytical profile with particular groups of toxicity pathways either consistently responsive or not responsive across test systems. The most responsive health-relevant endpoints were related to xenobiotic metabolism (pregnane X and aryl hydrocarbon receptors), hormone-mediated modes of action (mainly related to the estrogen, glucocorticoid, and antiandrogen activities), reactive modes of action (genotoxicity) and adaptive stress response pathway (oxidative stress response). This study has demonstrated that selected cell-based bioassays are suitable to benchmark water quality and it is recommended to use a purpose-tailored panel of bioassays for routine monitoring.


Assuntos
Bioensaio , Água Potável/análise , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Qualidade da Água/normas , Animais , Austrália , Benchmarking , Carvão Vegetal/análise , Água Potável/normas , Estrogênios/análise , Filtração , Técnicas In Vitro , Reciclagem , Testes de Toxicidade , Água/análise , Purificação da Água , Peixe-Zebra
20.
Sci Total Environ ; 484: 379-89, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-24050789

RESUMO

Toxic compounds such as organochlorine pesticides (OCs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ether flame retardants (PBDEs) have been detected in fish, birds, and aquatic mammals that live in the Columbia River or use food resources from within the river. We developed a custom microarray for largescale suckers (Catostomus macrocheilus) and used it to investigate the molecular effects of contaminant exposure on wild fish in the Columbia River. Using Significance Analysis of Microarrays (SAM) we identified 72 probes representing 69 unique genes with expression patterns that correlated with hepatic tissue levels of OCs, PCBs, or PBDEs. These genes were involved in many biological processes previously shown to respond to contaminant exposure, including drug and lipid metabolism, apoptosis, cellular transport, oxidative stress, and cellular chaperone function. The relation between gene expression and contaminant concentration suggests that these genes may respond to environmental contaminant exposure and are promising candidates for further field and laboratory studies to develop biomarkers for monitoring exposure of wild fish to contaminant mixtures found in the Columbia River Basin. The array developed in this study could also be a useful tool for studies involving endangered sucker species and other sucker species used in contaminant research.


Assuntos
Cipriniformes/fisiologia , Monitoramento Ambiental , Expressão Gênica/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Cipriniformes/genética , Retardadores de Chama/metabolismo , Retardadores de Chama/toxicidade , Éteres Difenil Halogenados/metabolismo , Éteres Difenil Halogenados/toxicidade , Hidrocarbonetos Clorados/metabolismo , Hidrocarbonetos Clorados/toxicidade , Praguicidas/metabolismo , Praguicidas/toxicidade , Bifenilos Policlorados/metabolismo , Bifenilos Policlorados/toxicidade , Rios/química , Poluentes Químicos da Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...